My story in a few lines

I studied Mathematics in my hometown Athens and took my diploma at 2004. After that, I followed a 2-year master's program in the same university, the National and Kapodistrian University of Athens in Statistics and Operational Research until 2006. Later on, I joined the Greek army for military obligations and found myself in Chios, a Greek island, where I studied Financial and Management Engineering. The next stop was in Samos, a Greek island too, still in the University of the Aegean, where I obtained my Phd in Applied Mathematics in 2016. My scientific works have been published in peer-reviewed international scientific journals and I have presented them abroad (Antwerp, Eindhoven, Linz). Moreover, I have been a reviewer for the *Journal of Computational and Applied Mathematics, Applied Numerical Mathematics, Mathematics and Computers in Simulation, Journal of Mathematical Finance* and *Mathematical Reviews*.

I taught Mathematics in the Department of Mathematics, track in Statistics and Actuarial-Financial Mathematics of the University of the Aegean from 2011 to 2015, I had lots of collaborations with students, the chance to attend and participate in international conferences and finally the opportunity to visit the University of Eindhoven in Netherlands, through the Erasmus+ Studies grant. In the last four months of 2016, I worked as a post-doc in Linz, Austria in a small project. After that, I was employed in the Alexander Technological Educational Institute of Thessaloniki as a temporary academic staff and as a collaborating academic staff in the Open University of Cyprus. In the spring semester of 2018-2019 I started my cooperation with the University of West Attica, where I still work. In the spring semester of 2020 – 2021 I was employed in the Hellenic American University. Apart from the teaching activities in undergraduate level, I also work (teach – organize) in postgraduate programs run by the University of West Attica.

My scientific interests

I am exploring the efficiency of a new numerical method, which we call semi-discrete, for the numerical solution of non-linear stochastic differential equations (SDEs). One of the key features of the method is the preservation of the domain of the original SDE; in the context of financial mathematics, this domain is the non-negative real numbers. This method is able to overcome some problems that arise in the approximation procedure of non-linear SDEs, such as moment explosion.

We often meet highly non-linear (in the drift and diffusion coefficient) SDEs in the description of quantities of interest in the various fields of applied mathematics [bio-mathematics (Wright-Fisher), epidemic models (SIS), computational finance (the Heston 3/2-model which is super-linear and the mean-reverting CEV model which is sub-linear, the Ait-Sahalia model)].

We can combine the semi-discrete method with the idea of split-step methods constructing a hybrid method which may approximate the solution process of the SDE at hand, in the way we desire. So far, we have done this having in mind a strongly convergent method, possessing an eternal life-time (domain preservation) which does not explode and is explicit (in order to be easily implemented). The order of convergence of the method (the truncated version) is proved to be close to ½.